Bone stands out as the most frequently affected distant site for metastatic disease, leading to significant patient morbidity, loss of autonomy, decrease in quality of life and increased societal costs. Frequent consequences of metastatic bone disease include pain, hypercalcemia, pathologic fracture, and myeloid compression, collectively referred as skeletal related events (SRE). Bone targeted agents (BTA), such as zoledronic acid (ZA) and denosumab, changed significantly this panorama by delaying time to first and subsequent SRE. These novel agents that fundamentally target bone microenvironment and are thus often referred as BTA, have the merit to be effective in reducing SREs, but also to be the one first class of agents to specifically target the medium influencing cancer outcomes. Such effect is achieved through the disruption of osteoclast activity, either by the direct and specific cytotoxic action of bisphosphonates to osteoclasts or by shutting down RANKL, the most potent activator of osteoclasts, using denosumab. This comes however at a price, briefly, increased frequency of hypocalcemia, a rare jaw lesion referred as osteonecrosis of the jaw (ONJ); and, in some patients, decreased renal function (usually associated with IV bisphosphonates, namely ZA).

Although by different mechanisms, these antiresorptive agents reduce skeletal calcium release into circulation, thus resulting in hypocalcaemia. As recently shown by Body and others, hypocalcemia is more frequent with denosumab than ZA for every tumor type (1,2). This effect is mostly due to the fact that RANKL inhibitors are more potent at reducing bone turnover, consequently reducing the release of calcium into circulation; on the other hand, this also explains the higher efficacy of RANKL inhibitors at reducing SREs in solid tumors (3) [how denosumab and ZA compare in patients with multiple myeloma is still a matter of debate (4)]. Oncologists should however consider that the risk of hypocalcemia can be controlled and is reversible, making this a small price to pay when put into perspective of the clinical advantage at preventing SREs. In this study the risk of developing hypocalcemia was 40% lower in patients treated with denosumab who reported taking calcium/vitamin D supplements at any time during the study, which highlights the importance of adhesion to calcium supplementation in patients receiving denosumab. Besides inadequate intake of vitamin D and calcium, parathyroid dysfunction or impaired renal function, both having a critical role in the phosphocalcic metabolism, further add to this risk and should therefore be in the mind of treating oncologists.

Extensive osteoblastic metastases have also been associated with hypocalcemia independently of treatment with BTAs; BTAs further add to this risk. Prostate cancer is well-known for causing osteoblastic bone metastasis, which could explain why it has a higher incidence of hypocalcemia. However, in this particular analysis, radiographic pattern of bone metastases did not modulate the risk of hypocalcemia. As a matter of fact, blastic lesions were associated with hypocalcemia in the univariate analysis, but not in the multivariate analysis. The granular use of other variables, as markers of bone metabolism that more closely inform the biochemical events of bone metabolism, might explain
this empirical discrepancy and why blastic lesions no
longer associate with hypocalcemia when controlling for
markers of bone metabolism. Seen from another angle,
this might constitute an additional argument in favor of
the use of markers of bone metabolism to stratify for
the risk of hypocalcemia. However, until an updated consensus
is reached in this matter (5), radiographic pattern of bone
metastases should be used as an empirically risk factor
for the development of hypocalcemia in the context of
treatment with BTAs.

In a small retrospective chart review assessing the risk
of hypocalcemia in patients receiving ZA, Hanamura and
colleagues (6) identified other risk factors for hypocalcemia,
as lower adjusted serum calcium concentrations at date
of initiation of ZA and concurrent administration of
corticosteroids. It is known that corticosteroids suppress
intestinal calcium absorption, depress vitamin D activity and
reabsorption of calcium in renal tubules, therefore inducing
hypocalcemia. Of note, the majority of patients who have
metastatic castration resistant prostate cancer (mCRPC)
receive steroids concurrently with taxanes or abiraterone
thus being a common situation in these patients.

Besides hypocalcemia, ONJ is also a matter of
clinical attention. While the proportion of patients with
hypocalcemia tends to be highest in the first administrations,
recent data highlights the added risk of ONJ with
cumulative exposure to denosumab, as to other BTAs (7).
In patients planned to start on BTAs, treating physicians
should consider a full dental examination and any eventual
oral health intervention should be performed before the
initiation of BTAs. Furthermore, patients should be aware
of the importance of continued oral health, to report oral
health symptoms and avoid major oral health interventions
(as dentoalveolar surgery) during treatment with BTAs.
Finally, frequent clinical assessment of oral mucosa integrity
should also be a priority, especially in case of long-term
treatment.

Over past years, several studies tested the role of de-
escalated regimens of ZA and denosumab in patients with
breast cancer and bone metastases. In these studies, patients
with low levels of bone remodeling markers at baseline or
after completing at least 3 months of BTAs at conventional
dose had their BTA de-escalated from every 3–4 weeks
to every 12 weeks. In a pooled analysis of these studies,
therapy de-escalation did not show any detrimental effect in
the rate of on-study SREs or pain (8). This might translate
into relevant gains in patients’ safety (by reducing rates of
hypocalcemia and ONJ), quality of life (by reducing the
need for in-hospital treatments) and health costs (both
deriving from drug use and management of side effects).

Despite not preventable, risk for hypocalcemia can be
managed by closely monitoring those with risk factors
for hypocalcemia (especially during the first 6 months
of therapy), by supplementing patients with calcium and
vitamin D, by including patients in dose de-escalation
regimens (at least those with primary breast cancer) and by
selecting for BTA therapy only those patients with well-
established benefit (as by saving non-CRPC with bone
metastasis from BTAs).

Acknowledgements

None.

Footnote

Provenance: This is a Guest Editorial commissioned by
Executive Editor Dongquan Shi, MD, PhD (Department of
Sports Medicine and Adult Reconstruction, Drum Tower
Hospital, Medical School, Nanjing University, Nanjing,
China).

Conflicts of Interest: The authors have no conflicts of interest
to declare.

Comment on: Body JJ, Bone HG, de Boer RH, *et al.*
Hypocalcaemia in patients with metastatic bone disease

References

1. Body JJ, Bone HG, de Boer RH, *et al.* Hypocalcaemia
in patients with metastatic bone disease treated with
2. Qi WX, Lin F, He AN, *et al.* Incidence and risk of
denosumab-related hypocalcemia in cancer patients: a
systematic review and pooled analysis of randomized
3. Sun L, Yu S. Efficacy and safety of denosumab versus
 zoledronic acid in patients with bone metastases: a
systematic review and meta-analysis. Am J Clin Oncol
2013;36:399-403.
 results from the multiple myeloma patient subset treated
with denosumab or zoledronic acid in a randomized phase

doi: 10.21037/aoj.2016.08.02