Introduction

The glenohumeral joint is the most frequently dislocated joint in the body, because of its inherently unstable bony morphology (1). The glenoid labrum is one of the structures that improves shoulder stability, by deepening the shallow glenoid fossa to improve its articulation with the humeral head. Bankart lesions, a detachment of the joint capsule and labrum from the anterior glenoid rim with or without a bone fragment, have been identified in as many as 85% of shoulder dislocations (2,3). Historically, the gold-standard solution for the surgical treatment of anterior shoulder instability has been an open Bankart repair (3-11). This approach allows surgeons to directly visualize the glenohumeral joint, accomplish a large capsular shift and guarantee a complete repair of the anteroinferior capsulolabral tissue (12).

As arthroscopic procedure techniques have greatly evolved and improved over the last decade, a shift occurred that favors the arthroscopic approach (5,7,10,11,13,14). The advantages of arthroscopy include shorter operative time, a smaller incision, preservation of the subscapularis tendon, decreased morbidity, the ability to concurrently address other associated intra-articular pathology, including the posterior labrum, and faster recovery of range of motion (4,5,8-10,12). Initially the failure rates were high; however, the use of at least 3 suture anchors are thought to provide a superior result (3,6-9,14). A recent systematic review suggests that by excluding patient with significant bone loss, using 3 or more anchors, and performing the surgery in the lateral decubitus position, the recurrence rate decreases from 17.8% to 7.9% for collision athletes (15).

Despite progressive use of modern arthroscopic Bankart repair techniques, there are concerning findings that this approach offers inferior outcomes regarding recurrent instability, recurrent dislocation/subluxation, reoperation rates, and persistent capsular laxity (3,6,12,16,17). Patients that participate in contact sports, have physically demanding activities or work, aged less than 25 years, or suffering from bone loss or hyperlaxity experience additional risk (3,14,18). We will examine the evidence for the use of the open Bankart today, describe our surgical technique and offer clinical pearls in this chapter.

Abstract: Despite the progressive use of modern arthroscopic Bankart repair techniques, there are concerning findings that this approach offers inferior outcomes regarding recurrent instability, recurrent dislocation/subluxation, reoperation rates, and persistent capsular laxity. Patients that participate in contact sports, have physically demanding activities or work, aged less than 25 years, or suffering from bone loss or hyperlaxity experience additional risk. We will examine the evidence for the use of the open Bankart today, describe our surgical technique and offer clinical pearls in this chapter.

Keywords: Shoulder; anterior instability; surgical technique; clinical pearls; arthroscopic Bankart; Bankart repair

Received: 24 June 2017; Accepted: 29 September 2017; Published: 08 November 2017.

doi: 10.21037/aoj.2017.10.10

View this article at: http://dx.doi.org/10.21037/aoj.2017.10.10
Review of the literature

Open Bankart long term outcomes

One of the most important criteria for determining success with any surgical procedure is the maintenance of good outcomes with long-term follow-up. Studies examining the open Bankart procedure have in general longer follow ups than arthroscopic Bankart, with more historical precedence. In 1978, Rowe reported the failure rates after open shoulder stabilization for recurrent anterior instability to range between 3% to 9% (19). In a 25-year follow up study, Fabre et al. reported excellent patient-reported outcomes for the open Bankart procedure with no statistically significant loss of motion and a 16% recurrence rate (20). Like many long-term shoulder instability outcome studies, the authors found 69% of patients showed radiographic signs of osteoarthritis at latest follow-up. Berendes et al. found a lower recurrent instability rate of 9.7% over 10 years using a modified open Bankart procedure with suture anchors (21). In the absence of substantial osseous glenoid defect, Moroder et al. found a recurrence rate of 17.5% and revision rate of 4.2% at a minimum of 20 years in a study of 47 patients, most without symptoms for at least eight years postoperatively (22). Arthroscopic Bankart using suture anchors has reported recurrence rates of up to 10% after 3.6 years, 14–38% after 5 years, and 23–35% after 10.9 years (8,14,21).

Results in contact athletes

Collision athletes have been found to be at an increased risk for redislocation following Bankart procedures due to the high physical demand of the activity, yielding 11–16.5% postoperative subluxation or dislocation after an average of 3 years (18). Rhee et al. found that in this patient population, arthroscopy resulted in a higher failure rate than open Bankart repair (18). The authors found a 25% recurrent instability rate following arthroscopic surgery and 12.5% recurrence rate following open Bankart repair. Similarly, Yamamoto et al. found contact athletes had two times higher recurrence rate in the open group and three times higher in the arthroscopic group compared to that of non-contact athletes (23). In a study of 103 patients (majority were collision athletes) treated with open Bankart repair, Pagnani only found two recurrences (24). Interestingly, the author found that bone loss of the humeral head or glenoid did not appear to result in a significant increase in the risk of recurrence with conventional open techniques of stabilization, as has been shown with arthroscopic techniques.

These results show that open Bankart may be a better choice than arthroscopic Bankart in the contact athlete population; however, these contact athletes remain a difficult population to treat with higher recurrence rates than normal.

Results in the revision setting

Revision of failed arthroscopic Bankart repair is also another area where open Bankart may be useful. De Giorgi et al. reported a 36% failure rate when arthroscopic Bankart was used again in the revision setting (25). In contrast, Cho et al. found a lower recurrence rate of 11.5%, when revising initial arthroscopic Bankart with an open Bankart repair (10). In a ten year follow up study, Neviaser used the open Bankart procedure to revise thirty prior failed stabilizations (26). Twenty-two of the twenty-three athletes returned to play. No recurrences or revisions were found. The authors concluded that the open Bankart repair offers a reliable, consistently successful option for revision of failed stabilizations.

Direct comparison studies between arthroscopic and open Bankart

There’s a lack of high quality randomized level one studies comparing open versus arthroscopic Bankart techniques. Sperber conducted a randomized study in 56 patients with minimum two year follow up. They found the recurrent instability rate to be 23% in the arthroscopic group and 12% in the open group, however this did not reach statistical significance (27). Fabbriani’s prospective study involved 60 patients evenly divided into two groups. They reported no recurrences in either group and similar constant scores (28). Bottoni conducted a randomized study in 61 patients; twenty-nine with open technique and thirty with arthroscopic techniques. Both techniques yielded similar subjective and objective outcomes, and similar recurrence rates (29). However, the above studies may have been underpowered given the small sample sizes to detect a difference in recurrence rates. Mohtadi et al. conducted a similar randomized study in 2014 with over 180 patients and powered appropriately to look for recurrence (30). In this study, Mohtadi found that recurrence rates at two years were significantly lower in the open group at 11% compared to the arthroscopic group at 23% (30). Similar WOSI and ASES scores were observed in both groups. Along the same lines, in a retrospective comparison, Guanche et al. found open Bankart had 0% recurrence.
They concluded that open Bankart leads to better satisfaction, stability, range of motion, and a lower recurrence of subluxation/dislocation (31). Virk et al. found no statistical difference in failure rates, but did find arthroscopy to have a significantly shorter time to recurrence of instability (9). Freedman et al. reported arthroscopic Bankart to have a significantly higher rate of recurrent dislocation at 20.3% than open Bankart repair at 10.3%. In addition, the authors reported a higher proportion of patients with an excellent or good postoperative Rowe score in the open group (88%) than in the arthroscopic group (71%) (32). A meta-analysis by Mohtadi et al. showed that an open repair for recurrent traumatic anterior instability has a lower recurrent and faster return to activity (11). In addition, there’s also level one evidence that there are no side-to-side isokinetic strength deficits between patients having an open stabilization using a subscapularis splitting approach versus arthroscopic stabilization (33).

Surgical technique

Exam under anesthesia should always be conducted first to check for engagement of the Hill Sachs lesion, grading of the load-shift, posterior and multi-directional instability, and comparison to the contralateral shoulder. After examination under anesthesia, the patient was positioned in a modified beach-chair position with a small bump underneath the scapula to protract the scapula forward.

The open stabilization technique consisted of an anterior axillary incision, following the deltopectoral interval retracting the cephalic vein laterally. Next, the clavipectoral fascia is incised and the conjoined tendon is retracted medially and the subscapularis tendon exposed. If the patient has significant capsular laxity, we prefer to perform a subscapularis tenotomy because it allows us to perform a more extensive capsular shift. We tenotomized the subscapularis tendon longitudinally 1.5cm from its insertion on the lesser tuberosity (Figure 1); the tendon is tagged and carefully separated from the underlying capsule (Figure 2).

A longitudinal capsulotomy along with any capsular defects superiorly is first closed in a side-to-side manner with absorbable suture. It is important to only close the lateral most aspect of the interval with the arm in external rotation to not restrict motion. A horizontal capsulotomy to the anteroinferior labrum to create inferior and superior capsule leaflets to allow for exposure and subsequent capsular shift (Figures 3,4).

A humeral head retractor such as a Fukuda is then placed laterally and a retractor placed medially along the scapular neck to expose the Bankart lesion (Figure 5). A burr is used...
to decorticate the neck to facilitate bony healing. Anatomical labral repair is performed with double loaded suture anchors from inferior to superior along the anterior rim at the 6, 5, 4 and 3 o’clock position. In bigger lesions, a double row repair can be made with anchors placed more medially along the scapular neck (Figure 6). Sutures from the anchors are passed in a mattress configuration and tied (Figure 7).

A lateral-based capsular shift is then used to eliminate redundancy in the axillary pouch. The inferior leaflet of the capsule is shifted superiorly and laterally, and attached to the humeral neck with suture anchors (Figure 8); the superior leaflet is shifted and attached inferiorly and laterally, overlapping the inferior leaflet. We use a “pants over vest” suture medially by advancing the inferior leaflet superiorly and then reinforcing the repair with the overlapping superior leaflet (Figure 9). The shoulder should

Figure 4 A horizontal capsulotomy is then made completing a T-capsulotomy.

Figure 5 A Bankart retractor is placed anteriorly exposing the anterior glenoid.

Figure 6 Anchors are placed in the anterior glenoid.

Figure 7 Sutures are passed in a mattress fashion and tied repairing the capsulolabral complex.

Figure 8 Capsular shift is performed by shifting the inferior capsule superiorly using suture anchors placed along the humeral neck.

Figure 9 Pants over vest repair of the anterior capsule.
be completely stable at this point with the completion of the capsular repair (Figure 10).

Anatomical repair of the subscapularis tendon is performed with high tensile nonabsorbable suture (Figure 11). The soft tissue and skin is closed in layers and patient immobilized in a sling for four weeks.

Clinical pearls

- The separation between subscapularis tendon and the underlying capsule is done easier if started inferiorly, where there is a more defined tissue interval. This is typically just superior to the anterior circumflex vessels.
- We prefer to use self-retaining retractors such as a Cobell for retraction. However, these can slip over the course of the case, and constant attention should be paid to place the medial paddle as inferior as possible for better visualization of the anterior inferior glenoid.
- We routinely close the rotator interval particularly in lax patients with a sulcus sign. We like to do this laterally, and not medially.
- A subscapularis split approach can also be used if just a labral repair needs to be made, such as in the setting of a bony Bankart lesion. However, we prefer to perform a subscapularis tenotomy because it allows us to perform a more extensive capsular shift.
- For a subscapularis split approach, the muscle is split in a horizontal fashion at the interval between the upper 2/3rd and lower 1/3 of the muscle. The muscle is reflected off the capsule and then a horizontal capsulotomy is made. The Bankart lesion can be performed and a capsular shift can be performed, shifting the inferior capsule superiorly to eliminate antero-inferior redundancy.
- The repair of the subscapularis can be done also with sutures from the anchors placed for capsular shift for added security.

Acknowledgements

None.

Footnote

Conflicts of Interest: The authors have no conflicts of interest to declare.

References

