Introduction

Hip resurfacing arthroplasty can be performed through a variety of surgical approaches with the ideal candidate for hip resurfacing being a young, active patient with hip pain, limiting function and quality of life, with the diagnosis of hip osteoarthritis. It is clear that not all patients are candidates for hip resurfacing due to underlying pre-existing hip anatomy as well as quality of the bone (1). In general hip resurfacing should be avoided in patients with large femoral head/neck cysts (more than 1 cm in diameter), poor bone quality, significant dysplasia; in addition impaired kidney function, female gender and known metal sensitivity are contra-indications with metal on metal hip resurfacings (1). Because hip resurfacing has unique mechanisms of failure such as femoral neck fracture, surgical techniques to decrease the risk of vascular insult, component malposition, i.e., acetabular, femoral neck notching are critical. More importantly, short term failures with hip resurfacing due to limited surgeon experience can be further compounded by poor patient selection (2), inappropriate surgical exposure leading to poor implant positioning (3). In addition, hip resurfacing requires specific attention in regards to femoral component sizing, positioning as well as preparation where pathologies such as: osteophytes, cysts, retro-tilting of the femoral head will affect femoral component survivorship (4). The incidence of femoral neck fracture ranges from 0–4% (5-7) with osteonecrosis (ON) of the femoral head being the leading cause (8). Campbell et al. (8) found thermal necrosis at the cement bone interface in cases of both neck fracture and femoral component loosening, emphasizing the importance of performing an optimal cement technique while avoiding excessive cement penetration. Another key finding in that paper was edge wear on the acetabular component due to component acetabular component malpositioning (i.e., >55° of abduction). In another retrieval study, Costa et al found a significantly higher percentage of empty lacunae (i.e., dead cells) in femoral heads where the posterior approach was used highlighting the importance of maintaining femoral head viability during surgical exposure (9).
The principles of choosing a surgical approach for either total hip replacement or hip resurfacing should be the same i.e., permit proper patient position; provide access to involved area for desired intervention; avoid damage to functionally important structures, i.e., inter-muscular and inter-nervous; approach should be extensile, should not be associated with greater complication rate and should be cosmetically acceptable. In addition, the approach has to be carefully chosen keeping in mind surgeon’s expertise, patient’s body habitus and previous surgical incisions around the hip. More importantly over the last 10 years, choice of surgical approach in total hip arthroplasty has been of significant interest in regards to optimize patient recovery, i.e., outpatient joint replacement, minimizing risk of dislocation and maximizing patient function (10) (Table 1). With the first generation of hip resurfacing of metal on polyethylene (11-13), a variety of surgical approaches were used: trans-trochanteric, anterior, posterior and Hardinge which were also used for total hip replacement with the caveat that hip resurfacing usually requires a longer incision for optimal exposure of the femoral head. With the current generation of metal on metal hip resurfacing, the posterior surgical approach is the most commonly used with modifications allowing for some preservation of the vascular supply to the femoral head which are at greater risk with this approach (14,15). The anterior, lateral approach and the trochanteric slide osteotomy preserve the ascending branch of the medial femoral circumflex artery as well as the insertion of the short external rotators as the hip is dislocated anteriorly. However, with the lateral- and trochanteric slide patients can suffer from abductor weakness and Trendelenburg gait. Whilst, the Hueter-anterior hip approach for hip resurfacing is not as common and requires specialty training, it does preserves the femoral vascularity without disruption of the abductors (16).

The goal of this review article is to present the three most common surgical approaches for hip resurfacing providing advantages and disadvantages.

<table>
<thead>
<tr>
<th>Approach</th>
<th>Posterior Advantages</th>
<th>Anterior Advantages</th>
<th>Lateral Advantages</th>
<th>Trochanteric flip Advantages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. Excellent exposure</td>
<td>1. Good exposure</td>
<td>1. Adequate exposure</td>
<td>1. Excellent exposure</td>
</tr>
<tr>
<td></td>
<td>2. Preservation of hip abductor muscles</td>
<td>2. Preserves head blood supply</td>
<td>2. Preserves the posterolateral capsular blood supply</td>
<td>2. Preserves femoral head blood supply</td>
</tr>
<tr>
<td></td>
<td>3. Easy reproducibility by surgeon, familiar to surgeons</td>
<td>3. Supine more reliable cup position</td>
<td>3. Similar abductor strength postop than trochanteric flip osteotomy</td>
<td>3. Preserves the posterior capsule intact</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Preserve muscle function, no need for muscle release</td>
<td>4. Allows immediate full weight bearing</td>
<td>4. Does not require gluteal muscles desinsertion form the greater trochanter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Fast recovery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disadvantages</td>
<td>1. Risk of ON</td>
<td>1.Wound healing issues</td>
<td>1. Abductor weakness</td>
<td>1. Requires healing of the osteotomy, requires open reduction and internal fixation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Risk of components of HR in varus antversion</td>
<td>2. LFCN neuropraxia</td>
<td>2. Limited early weight bearing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Risk of injury the femoral nerve</td>
<td>3. Limited exposure of acetabulum</td>
<td>3. Risk of trochanteric non-union or delayed union, potentially requiring a second surgical intervention</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4. Unfamiliar to surgeons</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5. Need for positioning table</td>
<td></td>
</tr>
</tbody>
</table>

ON, osteonecrosis; HR, hip resurfacing; LFCN, lateral femoro-cutaneous nerve.
The anterior approach has been used increasingly in the last few years not only for THA but also for hip resurfacing (16, 17). This approach was originally described in 1948 by Jean and Judet (18). The anterior approach for hip resurfacing is an approach with advantages and limitations. In expert hands it is optimal for minimal soft tissue damage and facilitating recovery.

Hueter-anterior approach

Advantages

Preserves blood supply to the femoral neck by preserving the obturator externus tendon intact and when performing a circumferential capsular release and leaving a cuff of capsule; the retinacular vessels are preserved as well (15, 19). Preserves muscles insertions on the femur as it is an intermuscular approach. Good exposure of femur and acetabulum. Fast recovery as there is minimal soft tissue manipulation and no muscle release. No abductor weakness and no Trendelenburg gait that can be present with other approaches resulting in adequate function postoperatively (20). With the patient in the supine position, cup orientation is more reliable facilitating intraoperative fluoroscopy to confirm proper acetabular component positioning (17).

Disadvantages

Technically challenging, requires expertise and a learning curve, as most orthopaedic surgeons are trained with other more common approaches such as posterior approach (21-23). When choosing the anterior approach for hip resurfacing the surgeon must have a clear understanding of the anatomy and orientation of the femur and acetabulum through the anterior approach with the patient supine and with the extremity in extension, external rotation for the femur and neutral flexion/extension with knee flexion and external rotation of the leg for the acetabulum. A positioning table is highly recommended and special instrumentation to allow adequate exposure and permit insertion of components with relative ease. A Spider-arm retractor might be useful for holding retractors from the contralateral side of the patient (Figure 1).

The incision of the anterior approach for hip resurfacing could require a more extensile incision for adequate manipulation and dislocation of the femoral head (24, 25). In about 5–10% of cases, 1 to 1.5 cm of the tensor muscle is released at the iliac crest facilitating femoral head exposure. There is limited visualization of superolateral aspect of the femur and posterolateral aspect of the acetabulum compared with the posterior approach. Conversely, the ascending branch of MCFA as well as the retinacular vessels to the femoral head are not compromised (14). Possible complications of the procedure are femoral neck fracture, component malposition, lateral femoro-cutaneous nerve paresthesia (26), which itself is not associated with a limitation in function (17, 26). Another critical component to consider is the learning curve which is comparable to more extensive surgical approaches at the first fifty procedures in a high volume arthroplasty surgeon, mainly in regards to acetabular component positions (Figure 2) (16).

![Figure 1 Spider retractor holding anterior hip retractor during anterior-Hueter hip resurfacing.](image1)

![Figure 2 A 59-year-old male post bilateral hip resurfacing at 10 years with CoCr levels of 1.39 and 2.67 µg/L respectively. Some osteolysis on the right femoral neck where cup abduction angle is >55 degrees.](image2)
Hardinge/lateral approach

Advantages

Preserves the posterolateral capsular blood supply of femoral head. Surgeons are in general familiar with the approach (6,27). It offers adequate exposure of the femoral head and acetabulum.

Disadvantages

Partial release of abductors off greater trochanter, giving postoperatively a Trendelenburg gait which can affect as much of 20% of cases (28). This can become permanent if the superior gluteal nerve is injured with most literature suggesting a safe distance of 5 cm proximal to the greater trochanter (29-33). Others have reported that with the lateral approach there is a risk of placing the femoral component into excessive valgus and retroversion (34). McBryde et al. (35) found no difference in implant survivorship or incidence of complications between posterior and lateral approach in hip resurfacing with a 97% survivorship at 8 years (35).

Posterior approach

Advantages

This is the most extensile approach to the hip (35). Most orthopaedic surgeons are trained in the posterior approach of the hip, making this a familiar approach for the general orthopaedic surgeon. It allows an excellent exposure of femur and acetabulum. It is an adequate exposure for significant deformity that might alter the normal anatomy.

Disadvantages

This approach requires release of the short external rotators being a more invasive and extensile technique (36). There is a higher risk of ON with this approach (37); exposure of the femoral neck might injure the retinacular vessels compromising the blood supply and potentially causing ON, by preserving a cuff of the posterior capsule this is decreased (15). Care must be taken when dissecting distal to the piriformis muscle as the MFCA has been described to be at the inferior aspect border of the piriformis anastomosing with the IGA. The sciatic nerve is at risk as well and should be protected throughout the procedure (14,19,29).

Preservation of gluteus maximus sling insertion is important in young active patients to preserve hip extension and hip function. The inferior gluteal nerve (IGN) and inferior gluteal artery (IGA) should be protected as well; the reported average distance between greater trochanter and the first crossing branch of IGN and IGA is 8.7 cm. At the superior border of the muscular portion of the piriformis the acetabular branch of the SGA has been identified (29,36). Positioning of the components in hip resurfacing through the posterior approach has special considerations. Kunz et al. 2010, reported risk of varus and anteverision with the posterior approach (34).

Trochanteric “flip” osteotomy

Advantages

Trochanteric flip osteotomy, proposed by Ganz et al. (38) is an alternative to posterior approach preserving vascular supply, by performing a surgical hip anterior dislocation through the lateral approach, maintaining the posterior capsule intact. This approach does not require gluteal muscles de-insertion from the greater trochanter. In the 213 hips reported by Ganz et al. 2001 with trochanteric flip osteotomy, none had avascular necrosis (38). Beaulé et al. 2004, mentioned how the anterior surgical hip dislocation is the approach to preserve the most biology with a posterolateral trans-trochanteric approach while providing optimal exposure to the acetabulum and proximal femur minimizing the soft tissue dissection (39).

Disadvantages

Early weight bearing and active abduction is limited to allow the osteotomy to heal. There is a risk of trochanteric non-union reported as 7–8% (40), potentially requiring a second surgical intervention to facilitate union or to perform hardware removal if it becomes symptomatic.

Khan et al. (41) compared anterolateral approach and trochanteric flip osteotomy and noticed no difference in the outcome of abductor strength as well as component orientation and fixation. In another series, Beaulé et al. reported a nonunion rate of 8.7% after trochanteric flip osteotomy with 18% patients requiring removal of internal fixation. Hence this approach is reserved for patients undergoing hip preservation surgery with evidence of arthritis that may require an arthroplasty or patients with a high riding trochanter (Figure 3).
Future recommendations

Research and improvement are very dynamic in orthopaedic surgery, the orthopaedic community is continuously searching for new and better equipment and techniques that allow for maximal soft tissue preservation and a fast recovery of the patient, resulting in improved outcomes and satisfaction.

We presented in this review pros and cons of surgical approaches for performing hip resurfacing, there is no one technique without possible risks and complications. However, it is clear that the choice surgical approach can have an impact on clinical outcome. The best surgical technique for hip resurfacing is dependent on patient selection and most importantly is the experience of the orthopaedic surgeon with a good understanding of the anatomy and how to optimize implant positioning to avoid complications.

Acknowledgments

None.

Footnote

Conflicts of Interest: The authors have no conflicts of interest to declare.

Ethical Statement: The authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

References

Figure 3 A 45-year-old male with moderate arthritis of his right hip, pre and post right hip resurfacing with surgical dislocation approach.

