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Introduction

The frequency of anterior cruciate ligament (ACL) 
injuries are increasing and an estimated 200,000 ACL 
reconstructions performed per year in the United States (1). 
In the past, the suture repair of ACL has been reported with 
poor results, which indicated the poor healing potential 
of ACL (2-7). Therefore, ACL reconstruction has been 
replaced for the treatment of ACL injury. Nowadays, with 
the improvement on surgical techniques such as anatomic 
tunnel placement, graft selection, and optimal initial 
tension during graft fixation (8,9), ACL reconstruction is 
considered as a gold standard with a high success rate up to 
80% (10-14). However, according to a meta-analysis, only 
40% of patients could achieve full recovery independent 
of surgical techniques (15). Another multicenter cohort 
study showed that a median 7 months (range, 5–24 months) 
was needed for return to play of soccer athletes after ACL 

reconstruction (16). Moreover, the microscopic findings of 
autogenous patellar tendon graft for ACL reconstruction 
indicated that the autogenous grafts were different from 
natural ACL fiber and still immature structure even at  
1 year postoperatively (17). Some studies reported several 
concerns related to ACL reconstruction such as poor 
proprioception, postoperative muscular weakness, donor 
harvest morbidity, inability to restore normal kinematics, 
and potential  development of early osteoarthritis  
(18-21). Considering these limitations associated with ACL 
reconstruction, novel therapeutic options are needed.

Among several potential options, biological manipulation 
could be an available option. This includes the use of 
growth factors, platelet-rich plasma (PRP), stem cells, and 
biological scaffolds. With these tools, augmented ACL 
repair have been investigated to accelerate repair and 
regeneration. Specifically, stem cell-based therapy has been 
paid great attention based on the potential of stem cells 
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to regenerate tissue. There are various types of stem cells 
such as embryonic stem cell, induced pluripotent stem cell 
and mesenchymal stem cell (MSC). Among these stem 
cells, MSCs are most widely investigated because of their 
isolation with relative ease, and safety, along with high 
multipotency as well as high proliferative capacity (22-24). 
Thus, the purpose of this review article was to overview the 
current concepts on stem cell-based ACL repair. 

Capacity of ACL healing

The suture repair of torn ACL was first reported in 1895 (2).  
This initial report was followed by several studies. The 
results of these reports indicated that primary ACL repair 
had good outcomes in only one-third of patients (3-5). In 
addition, long-term follow-up studies showed that the failure 
rates of up to 90% (6,7) and were therefore largely replaced 
by ACL reconstruction for the past four decades. Conversely, 
a recent study reported that the patients who initially had 
good outcomes at 5 years preserved the good outcomes at 
30 years postoperatively (25). This suggests the potential of 
ACL repair by optimizing the healing environment.

There here are likely both intrinsic and environmental 
factors to be considered for optimized repair (26). Regarding 
the intrinsic factor, reparable capacity of ACL was thought 
to be poor in situ. In the past, several studies have shown 
a decrease in growth factors, cellularity and expression of 
molecules in ACL repair process, sometimes compared with 
other ligaments and tendons (27-33). However, in vitro healing 
study of human ACL showed that the injured ACL with 
preserved synovium had comparable healing capacity with 
that of semitendinosus tendon (34). Moreover, within the 
remnant, there were some cells including synovial cells that 
have healing potential for injured soft tissues, but no tissue 
bridging between the femoral and tibial remnant in another 
in vitro study (28). These results suggest that the human ACL 
possesses some intrinsic healing capacity and the synovium 
could play an important role in initial ACL healing. Therefore, 
the poor clinical outcome of ACL repair was attributable not 
only to a low intrinsic healing potential of the ligament, but 
also to other environmental factors that include mechanical 
environment, inflammatory condition, blood supply, nutrient 
delivery, and the supply of growth factors (28,35-39).

Cell-based therapy with ACL repair

In order to promote healing capacity of ACL, cell-based 
ACL repair has been investigated by in vitro and animal 

studies (40-42). MSCs are adult stem cells populated in 
various tissues with the multipotentiality and the capacity 
of self-renewal. MSCs can differentiate into progenitors of 
mesoderm-associated cells such as chondrocytes, adipocytes, 
or osteoblasts. In vivo, it was confirmed that MSCs are often 
localized in the perivascular area (40). It is accepted that 
MSCs are also present in the ACL (43,44). 

In vitro studies 

Past engineering approaches using ACL-derived fibroblasts 
have been reported and promising (29,32,45). But slow 
growth rate of such fibroblasts in vitro may limit their 
practical application (22,46). Especially, comparison of 
intra- and extra-articular ligament-derived cells in vitro 
(29,31), ACL-derived cells exhibited lower rates of cell 
division and migration than those derived from the medial 
collateral ligament.

Recent studies have documented bone mesenchymal 
stem cells (BMSCs) had the higher proliferation ability 
comparing to ACL-derived fibroblasts (22,47). Indeed, 
BMSCs have been capable of ligamentogenic differentiation 
with growth factors (23,48-53).

The adipose-derived stem cells (ASCs) have been also 
proposed as an alternative MSC for ACL repair. But the use 
of ASCs is controversy and still remains relatively unexplored. 
In vitro studies, porcine ASCs could stimulate ACL-
fibroblast proliferation and procollagen production (54),  
whereas human ASCs with growth factors could not 
stimulate their ligament differentiative potential (55).

In terms of mesenchymal stem cells derived from 
synovium (SMSCs), there have been no reports of ACL 
repair except one report of ACL reconstruction (56). 
However, the higher proliferation and differentiation 
potentials of SMSCs have than MSCs derived other 
tissues were confirmed (57-60) and thus SMSCs can be an 
alternative for ACL repair.

Using ACL-derived stem cells for ACL repair, there 
were a few reports of in vitro researches. Only two studies 
(43,44) reported that, under suitable culture conditions, 
both ACL-derived stem cells are similar to human BMSCs, 
which suggested that these ACL-derived cells could be 
viable alternative source for use in ACL repair. 

Animal experiments

Intra-articular injection of MSCs
Morito et al. (61) evaluated the localization of rabbit MSCs 
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after synovial fluid-derived MSCs intra-articular injection. 
They found that MSCs enter the synovial fluid after ACL 
and more MSCs were found in injured ACL compared to 
normal ACL. Their findings suggested that MSCs are not 
normally present in the intact ACL, but in injured ACL. In 
the other previous animal studies, intra-articular injection of 
BMSCs was applied for animals with partially injured ACL 
as a biologic treatment (26,62). Kanaya et al. (26) found that 
partially transected ACL gap was covered with repair tissue 
in which injected BMSCs were detected at 4 weeks after 
injection, whereas transected area without BMSCs injection 
retracted with increasing time and the gap remained. In 
their report, the ultimate failure load of the femur-ACL-
tibia complex after BMSCs injection was significantly 
higher than that after injection without BMSC at 4 weeks 
after surgery. Oe et al. (62) also found that fresh BMSCs 
was injected into the knee joint after transection of medial 
halves of ACL and both histological and biomechanical 
outcomes were almost same as normal ACL at 4 weeks after 
injection. In both studies, BMSCs remained in repair ACL 
until 4 weeks after injection (26,62). It is not clear whether 
the injected MSCs directly participated in repair tissue by 
matrix synthesis or acted to exert tropic effect to modulate 
repair environment. However, it is likely that the intra-
articular injection of MSCs could accelerate the healing of 
partially torn ACLs and thus this treatment using MSCs 
could be an option for promoting ACL repair, specifically 
in partially torn cases.

Scaffold seeded with MSCs
There were several reports demonstrated the evidence of 
scaffold seeded with MSCs for regeneration of ruptured ACL 
(51,63-65). Most studies showed the positive effect of BMSCs 
and scaffold for repair of ACL. BMSCs and scaffold have much 
clearer and distinct advantages over ACL fibroblasts, with 
respect to cell proliferation, GAG excretion, gene and protein 
expression for ligament-related extracellular matrix (ECM) 
markers, and in vivo survivability (63). Histological observation 
also showed that MSCs were distributed throughout the 
regenerated ligament and exhibited fibroblast morphology 
and, furthermore, direct ligament-bone insertion was 
reconstructed (50). In another past study, the use of BMSCs 
seeded in a collagen type I scaffold in the treatment of ACL 
injuries was associated with an enhancement of ligament 
regeneration, whereas regeneration was not observed in the 
group treated with suture alone or in the group associated 
with collagen type I scaffold without cells (64). Conversely, 
Proffen et al. (65) showed no significant improvements of 

ACL healing in the biomechanical or histological properties 
with the addition of ASCs and ECM scaffold. 

ACL reconstruction with MSCs
Regarding the promotion of ACL reconstruction using 
MSCs, there have been some studies investigated (56,66-70).  
In rabbit model, coating of semitendinosus tendon 
grafts with BMSCs results in the restoration of the 
chondral enthesis of normal ACL insertions rather than 
collagen fibers and scar tissue (66). The BMSC-enhanced 
ACL reconstruction also showed significantly better 
biomechanical properties than ACL reconstruction only. 
Conversely, Ju et al. (56) implanted SMSCs into tendon-
bone interface and showed SMSCs could enhance collagen 
production for strong connection between tendon and bone 
without formation of fibrocartilage. The cell career in their 
study was not fibrin sealant but the atelocollagen gel, which 
was one of the reasons for no fibrocartilage formation, 
different from the results using BMSCs. Thus, the results 
are inconsistent and additional studies, preferably with large 
animal models, are needed whether MSCs promote the 
osteointegration of ACL grafts. 

On allogenic ACL reconstruction, there is one study 
evaluating the effect of cell and gene therapy technique (71). 
Histological observation showed that the implantation of 
MSCs or PDGF-B transfected MSCs accelerated cellular 
infiltration into the ACL and enhanced collagen deposition 
in the wound. Similar to their findings, Nakamura et al. (72) 
reported an increased vascularity and enhanced collagen 
deposition in the wound of a patellar ligament after direct 
in vivo PDGF-B gene transfer in a rat model. Thus, gene 
transfer technique in combination with MSC implantation 
could further effectively optimize ACL repair and graft 
remodeling. Further studies are needed to accumulate 
evidences until clinical application of such combination 
therapies 

Clinical applications

Likewise, in vitro and in vivo animal studies, there were 
not sufficient numbers of reports on clinical applications 
of MSC-based therapy in ACL repair. To date, cell-based 
therapies were applied as only by percutaneous intra-
articular injection of autologous BMCs, or BMCs delivered 
by micro-fracture of the femoral condyle. Centeno et al. (73)  
reported a small case series of intra-articular injection 
of autologous BMCs for the patients with partial tear or 
complete tear retracted less than 1 cm. Based on good 
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magnetic resonance imaging (MRI) and clinical results, 
they claimed the feasibility of this treatment. However, no 
objective data such as anterior laxity was shown. There were 
also studies on the effectiveness of BMCs application to 
ACL healing by micro-fracture technique. First report was 
by Steadman et al. (74), reporting that the repair of complete 
proximal ACL tear in skeletally immature athletes with an 
averaged follow-up of 69 months. Micro-fracture reportedly 
leads to the formation of a blood clot and subsequent 
hematoma formation with BMSCs. Postoperative clinical 
score and activity level were equivalent to those before 
ACL injury. Anterior laxity evaluated by instrument was 
sufficiently improved (5 mm preoperatively to 2 mm 
postoperatively); 23% of 13 patients had a re-injury and 
underwent subsequent ACL reconstruction. More recently, 
same group showed that active middle-aged patients after 
same procedures with an average follow-up of 7.6 years (75).  
Similar to their previous report, good clinical results 
and only 8.9% of 48 patients required subsequent ACL 
reconstruction. These studies suggested that the healing 
response by micro-fracture could restore stability and knee 
function, with proper patient selection. Gobbi et al. (76)  
reported the suture repair of proximal partial ACL tear 
combined with micro fracture. These procedures were 
reapproximation of the torn ends of the ligament, thereby 
reducing the gap between the residuals, and creation of 
a continuity of the ligament, thus allowing the BMSCs 
recruited from the penetration of bone marrow to promote 
healing. Moreover, Gobbi et al. (77) evaluated the outcome 
after the suture repair of proximal partial ACL tear 
combined with micro fracture and injection of PRP glue 
at repair site. BMSCs and injected PRP might act as the 
source of precursor cells and growth factors. According 
their middle-term results, 78% of 50 athletes could return 
to their sports activities, a significant decrease in the side-
to-side differences in anterior laxity (4.1 mm preoperatively 
to 1.4 mm postoperatively). Clinical scores were sufficient, 
but four patients experienced re-tear and one patient had 
residual laxity resulting in a survival rate of 90% at the 
5-year follow-up. Even though good clinical results were 
found, they highlighted that not all ACL lesions can be 
treated with this technique; patient selection is essential 
and strict inclusion criteria should be followed. Finally, 
they concluded that this surgical technique of ACL primary 
repair utilized in severely selected patients with acute partial 
ACL lesions could offer good clinical outcomes (77). 

All these studies were only case series, but MSCs could 

promote the healing potential of injured and repaired ACL. 
Further researches and more evidences are necessary for 
expanding the indication of these approaches. 

Other biological treatment of ACL repair 

Along with MSC-based approaches, several growth factors 
including transforming growth factor beta1 (TGF-β1), 
fibroblast growth factor-2 (FGF-2), growth and basic-
FGF (bFGF) could potentially improve ACL healing by 
manipulating cellular activities, such as proliferation and 
differentiation of MSCs into ligament progenitor cells in 
repair process (78-82). In addition, PRP is known to contain 
these growth factors and the effect of PRP on ACL healing 
has been also investigated. Although no clear positive 
effects of PRP on ACL healing were reported (83,84), one 
human clinical study demonstrated that PRP promoted the 
repair of acute partial ACL tear (85). This clinical study 
showed the complete integrity of remnant on MRI and 
normalization of anterior laxity evaluated by KT-1000 in all 
patients. 

Recently, bioscaffolds combined with PRP were used 
for ACL repair. In vivo animal studies showed no positive 
effect of only collagen scaffold on ACL repair (86), however, 
there was significant improvement of the outcomes in using 
combination of collagen scaffold and autologous platelets (87).  
In a clinical study, Murray et al. (88) reported the results 
of ACL repair with augmentation using ECM-based 
collagen scaffold saturated with autologous whole blood. 
They confirmed the continuity of repair ACL substance 
by MRI and the clinical outcomes after ACL repair were 
equivalent compared to those after ACL reconstruction 
using hamstring autograft at 3 months postoperatively. 
They also showed that, the hamstring strength at 3 months 
postoperatively was significantly better in the ACL repair 
group than that in the ACL reconstruction group. This 
study only included fresh ACL tear less than 1 month 
following injury, which had at least 50% of the length of 
the ACL attached to the tibia on the preoperative MRI. 
Thus, with careful selection of the cases, this bio-scaffold 
technique could be applicable to some ACL injuries. More 
detailed, controlled studies are needed to validate the 
feasibility of this treatment. 

Generally, the scaffolds provide mechanical stability 
to the injured site while allowing for cell attachment 
and proliferation under a protected three-dimensional 
environment (89). However, several concerns still remain 
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associated with animal or chemical polymer-derived 
materials contained in scaffolds that could affect the long-
term durability and safety (90-93). Therefore, the concept 
of scaffold-free tissue engineering has been paid attention. 
Recent studies demonstrated the feasibility of a scaffold-free 
tissue-engineered construct (TEC) derived from synovial 
MSCs to cartilage and meniscus repair (Figure 1) (94-98). 
The TEC contains undifferentiated MSCs at high density 
in a three-dimensional matrix that has been synthesized by 
the MSCs themselves and promoted cartilage repair with 
comparable mechanical properties at 6 months in porcine 
cartilage defect model (99,100). Deie et al. (34) suggested 
that the synovium could play an important role in enhancing 
ligament-healing capacity. In this regard, it is reasonable to 
use the TEC derived from synovium to promote ligament 
healing as well. Absolutely, further researches are needed for 
clinical application of these biologic approaches including 
TEC to promote ACL repair and graft remodeling.

Conclusions 

ACL reconstruction is considered as a gold standard for 
ACL injury. But, clinically, several months are needed 
for achievement of full return to play sports in limited 
patients. Furthermore, microscopically, the autogenous 
tendon graft for ACL reconstruction was immature and 
different from normal ACL fiber at 1 year postoperatively. 
Therefore, new biological techniques using MSCs should 
be applied for ACL repair, owing to the development of 
tissue engineering. Historically, ACL suture repair has not 
succeeded in clinical results, because of the environmental 
factors, poor surrounding tissue and hypovascularity as well 
as poor healing capacity of ACL. Recent experimental and 
clinical studies associated with cell-based therapy using 

MSCs, with or without scaffold, PRP or the other biologic 
agents, suggested good results in healing of acute and 
partial ACL tears. These cell-based therapies using MSCs 
may be a potentially useful tool for improving ACL healing. 
However, patient selection is essential and strict inclusion 
criteria should be important. Not all patients with ACL tear 
can be treated with these cell-based therapies. To repair the 
complete ACL tear using MSCs, further researches and 
more evidences are necessary in the future. 
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engineered construct.
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