On-field pediatric injuries
Review Article

儿童户外创伤

Debbie Chi, Diana C. Patterson, Alexis C. Colvin

Department of Orthopaedic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA

Contributions: (I) Conception and design: All authors; (II) Administrative support: All authors; (III) Provision of study materials or patients: D Chi; (IV) Collection and assembly of data: D Chi; (V) Data analysis and interpretation: D Chi; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

Correspondence to: Debbie Chi. Mount Sinai Hospital, Department of Orthopaedic Surgery, 5 East 98th St., New York, NY 10029, USA. Email: debbie.chi@icahn.mssm.edu.

摘要:无论我们为了儿童安全做出多少准备,他们在户外的受伤总是不可避免的。因此我们应该认识到,缩短伤后的就诊时间对于减少远期并发症的发生极为重要。所以拥有一定相关知识储备的一线骨科医生应有能力去评估和处理心源性猝死、脑震荡、中暑、眼部损伤和一些常见的肌肉骨骼损伤。

关键词:中暑、脑震荡、眼部损伤、心源性猝死


Received: 01 December 2017; Accepted: 11 December 2017; Published: 04 January 2018.

doi: 10.21037/aoj.2017.12.05


介绍

最近一段时间,青少年参加体育运动的次数有所下降[1],但与运动相关的损伤发生率却有所增加,特别是像曲棍球这样的运动[2]。即使我们采取一些以减少伤害为目的的预防措施,例如改变铲球技术的规则去调整或减少碰撞,更好、更多的技术去设计先进的设备和头盔等,但受伤的人数仍在增加。在受伤的第一现场,骨科医生可能是这些损伤的第一处理者。因此及时识别并处理伤情是极为重要的,需要确定年轻运动员是否能继续比赛、下场或者应该马上去医院。由于父母希望孩子获得优质学位和奖学金,加上越来越多的安全审查以及关于青少年伤害长期后果的研究,医生的作用和责任显得更为重要。本文将讨论一些常见户外急症的现场评估与管理,例如心源性猝死(SCD),脑震荡、中暑和眼部损伤。


心源性猝死

心源性猝死是年轻运动员比赛中死亡的主要原因。它主要由运动时大量的体力消耗而导致出现潜在的心脏疾病。其中最常见的包括肥厚型心肌病和心律失常。这些疾病平时并没有症状,直到患者脱水或生理压力大时才会发病。心电图筛查可以提前发现这种危险的先天性心血管疾病[3]。也有许多研究表明了肢体心电图或超声心动图在筛查这些导致心源性猝死的心脏疾病的的有效性[4,5]。然而,12导联心电图的使用在儿童参与前筛查中的作用尚存争议[6,7]。主要的争议在于心电图的低成本效益和缺乏足够的基础设施进行筛选。目前在儿童心源性猝死的心电图预测上,并没有关于这两种疾病在此人群中的标准,也就没有诊断的特异性、敏感性和预测值。此外,没有规范的基础设施和培训,误报也可能会导致额外的昂贵检查。许多人认为心源性猝死的预防应该采取多方面高效的预防措施,如在大社区提供更加获取便捷性的自动体外除颤器[3,6,7]。在损伤发生时,运动员一旦出现无脉搏无呼吸的心脏骤停,现场医生应立即进行心肺复苏和使用AED急救[3]


脑震荡

研究表明,青年人的脑震荡年发病率正在显著增加,特别是在足球、曲棍球这种流行运动上[8]。最近国际足球联盟发表的高质量文献中指出,单次、特别是反复出现的脑震荡会导致远期的心理健康和认知障碍。目前脑震荡的现场诊断通常基于患者头部撞击的病史。而关键的是,我们必须确定病人有过意识丧失、迷失方向和失忆的经历。脑震荡的其他症状也包括躯体症状(恶心、头晕、疲劳、光敏感、噪音敏感不超过两次)、认知症状(反应迟钝或感觉精神受损)、异常情绪化以及异常躯体信号,例如平衡差、行为改变和睡眠障碍[9]。研究表明,早期治疗可以减少或消除这些症状[10]

早期进行现场评估的诊断工具包括脑震荡的标准化评估(SAC),运动脑震荡评估工具-第5版(大于13岁和5-12岁的儿童)、KingDevick测试和平衡误差评分系统(BESS)[11,12]。SAC可以在5分钟内对可能发生脑震荡的运动员精神状态进行评估,不需要专业的神经心理学家。SCAT5是一个脑震荡评估工具,包含了SAC的评估,也可以区分脑震荡和非脑震荡运动员[13]。King-Devick测试旨在通过扫视眼运动和快速数字命名提示脑震荡的存在,主要检测眼球运动、注意力和运动障碍[14]。通常需要大约2分钟完成,但无法完最终诊断脑震荡,这可能对认知和平衡测试是有价值的[15]。BESS实验主要测量姿势的稳定性,是6种改良的Romberg试验的可量化版本[14]

运动员一旦发生脑震荡,便应该立即退出比赛以缩短脑震荡恢复的时间[16]。运动相关脑震荡的症状持续时间一般小于4周,持续4周以上被定义为延迟恢复[17],那些在场上有遗忘或头晕的患者有很高的风险导致延迟恢复[18,19],以及唾液miRNA拭子鉴定阳性的患者[20]。年轻运动员应在进行大于24-48小时的休息,在不伴有脑震荡加症状重后再逐渐回到学校,并且避免接触性的身体运动[13]。他们在恢复过程中也应该避免剧烈运动。

对于年轻运动员来说,有个体化逐步回归学习和游戏(RTP)的模式[21]。6个步骤中的每个步骤需要至少1-2天完成,在取得进步后才可进入下一级[13]。通常需要1周或更长时间才能全部完成。症状轻微的患者鼓励早期体育活动,而儿童和青少年在成功回到学校之前,不应完全重返运动岗位[21]。校方应制定短期的、可实现的目标,确保治疗人员和患者在进行RTP方案时使症状逐步改善。


中暑

劳累性中暑(EHS)已成为高中运动员死亡最常见的间接原因之一,也是青少年死亡中最可能预防的疾病[22]。我们定义直肠温度高于40摄氏度的患者即是发生了中暑,这种疾病与全身炎症相关,会导致多器官功能障碍,严重时会危及生命[23,24]。当身体不能通过传导、对流和蒸发来释放从环境和新陈代谢中获得的热量时,就会发生劳累性中暑。我们主要通过增加皮肤毛细血管血流量和出汗来散热[25]。环境温度、湿度和脱水程度的升高阻碍身体散热的能力[26]。EHS的高危因素包括:有中暑史或劳累性抽筋史,体质差、脱水、睡眠不足、皮肤排汗障碍,以及药物史(如抗组胺药、抗胆碱药、钙通道阻滞剂,β受体阻滞剂,利尿剂,辣椒素,口服避孕药、非法药物和酒精)[27,28]

EHS的最佳治疗方法是预防,就是减少热量的产生。运动员是EHS的高危人群,预防性措施可以从季前赛和赛季早期的减轻危险因素开始,那时出现EHS的风险也最高[29]。这就需要教育运动员们在赛季前就进行体能训练;提供调节指南;使他们认识到充足的摄水、饮食盐摄入和充足的睡眠的重要性,这些可以维持他们出汗和排水的能力,以确保足够的血液通过他们的体表血管进行散热[30]。另外,指导教练合理安排季前赛,可以在早上训练来避免午后的高温,进行湿度的规划而避免过多的防护服和护垫,以保持运动员皮肤凉爽;在训练和比赛中保证冷却服装和冷却包在周围;以及在整个比赛过程中逐步增加运动强度和持续时间让运动员能够适应实际比赛过程中的温度变化[29]

快速识别和处理中暑可以有效降低发病率和死亡风险[31]。如果运动员表现出方向迷失、困惑、头晕、行为奇怪、易怒、头痛、协调差、谵妄、精神崩溃或癫痫发作,就应该立刻下场测直肠温度[31,32]。如果直肠温度正常,也有可能是运动员患上了运动相关低钠血症(EAH)[33]。这是一种血液中钠水平过低的水电解质平衡紊乱,可能是由于摄入过多液体而引起。此时应给予高钠的食物或饮料。如果直肠温度升高的话,要立即进行全身降温,可以使运动员浸入冷水中并不断加水循环以促进冷水疗法效果。如果条件有限,应该先浸泡四肢[34]。目的是在诊断后的30分钟内使直肠温度低于38.9℃。也可以静脉注射生理盐水作为复苏液。

一旦直肠温度降下来以后,运动员应被转到医院进行下一步评估,例如横纹肌溶解症或其他的器官衰竭需要进行进一步的液体更换[29]。紧急降温处理的重要性再怎么强调也不为过,因为持续直肠温度大于41摄氏度的EHS患者的死亡率高达80%[36]。死于EHS的患者多由于多器官功能衰竭造成,包括脑病、横纹肌溶解、脓毒性休克和由热细胞毒性、凝血功能障碍和内毒素介导的全身炎症因子反应[38]引起的肝肾衰竭[37]。研究表明,在身体崩溃前5分钟内识别EHS并开始积极冷却,存活率可接近100%[24,33]


眼损伤

眼损伤约占所有运动损伤的1.5%。风险较高的运动包括棒球/垒球、篮球、壁球、壁球、长曲棍球、摔跤、曲棍球和击剑[39]。5到24岁年龄段的眼部受伤大多与棒球和篮球有关[40]。虽然眼部损伤相对罕见,但它们在临床上很重要,因为它们是永久性视力损伤最常见的原因之一[41]。眼部损伤的症状包括疼痛、视力减退、复视、视野斑点和亮点、出血、肿胀、异物感和巩膜变色。大多数与运动相关的眼损伤是钝性外伤,可导致前房积血(虹膜血管破裂)、球后出血(可导致眼室综合征和眼压升高引起的永久性视力丧失)、视网膜撕裂或脱离,以及眼球破裂[42]。其他严重眼外伤包括眼眶骨折和穿透性眼外伤。这些损伤后,在眼科医生许可之前运动员不应再次参加比赛。对于角膜磨损、角膜异物、眼睑撕裂伤、烧伤和辐射暴露,如果出血得到控制且没有功能或双眼视力丧失的前提下,运动员可以恢复比赛[42]

眼部损伤的最初处理应从询问损伤的机制、撞击的力和方向,以及运动员受伤时是否佩戴隐形眼镜开始。有高度近视、既往眼部损伤或感染,既往眼部手术史的病人易导致眼球破裂[43],因此应询问既往眼部手术史。在查体中,应首先使用斯奈伦图来评估视力是否发生了改变。进行视野检查以评估视网膜、视神经或中枢神经系统损伤。对学生可以用阴灯或电话灯测试眼睛对光的反应、调节和收缩,以评估视网膜和视神经损伤。此外,还应评估眼外运动和面部感觉。应检查眼鞘、结膜和巩膜的颜色是否有水肿和视觉敏感性的变化,并检查角膜和晶状体是否混浊。眼底可检查视盘和视网膜是否有出血或脱离。

对于严重的眼睛损伤,如眼球破裂、视网膜脱落、穿透性眼外伤或出血,患者应禁饮食做好紧急手术的准备[43]。如果怀疑眼球破裂,应使用特定的护眼罩、塑料、水杯等保护眼睛。应该一直坐着并服用镇痛药和止吐药,避免任何可能增加眼压的动作,如valsalva动作。眼球出血可以用眼罩急性治疗、抬高头部、滴睫状肌麻痹剂,避免任何含阿司匹林的药品[42,43],直到眼科医生开始治疗。对于较轻的损伤,如角膜擦伤和异物,现场运动医学医生可以做一些让运动员返回比赛的处理。小的角膜擦伤用荧光素染料检查,并用局部抗生素如氯霉素和环状细胞麻痹滴剂治疗。戴隐形眼镜的运动员要由眼科医生诊治,因为他们更有可能出现感染,他们应该在痊愈前停止使用隐形眼镜。对于角膜异物,应冲洗眼睛,包括上、下眼睑(翻起眼皮)。湿润的棉签也可以用来去除异物。除非环境卫生比较差,一般没有必要使用局部抗生素[42]


结论

装备和规则的优化是为了比赛的安全进行。赛场上的急救人员必须能够识别和处理伤情。赛场上每一秒钟都可能发生EHS和心脏骤停,也可能是脑震荡和眼损伤等一些不危及生命的伤害,那么处理好病情便取决于对伤情的初步识别和管理。通过适当的知识储备和技能培训,第一反应的骨科医生要能处理和稳定心脏骤停、脑震荡、中暑、眼部损伤以及更常见的肌肉骨骼损伤。


Acknowledgments

The authors would like to thank the Department of Orthopaedic Surgery at Mount Sinai Hospital for its support.

Funding: None.


Footnote

Provenance and Peer Review: This article was commissioned by the editorial office, Annals of Joint for the series “Orthopaedic Sports Injuries in Youth”. The article has undergone external peer review.

Conflicts of Interest: All authors have completed the ICMJE uniform disclosure form (available at http://dx.doi.org/10.21037/aoj.2017.12.05). The series “Orthopaedic Sports Injuries in Youth” was commissioned by the editorial office without any funding or sponsorship. DCP served as the unpaid Guest Editor of the series. ACC served as the unpaid Guest Editor of the series and serves as an unpaid editorial board member of Annals of Joint from Jun 2016 to May 2018. The authors have no other conflicts of interest to declare.

Ethical Statement: The authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Open Access Statement: This is an Open Access article distributed in accordance with the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0), which permits the non-commercial replication and distribution of the article with the strict proviso that no changes or edits are made and the original work is properly cited (including links to both the formal publication through the relevant DOI and the license). See: https://creativecommons.org/licenses/by-nc-nd/4.0/.


References

  1. The Aspen Institute: Project Play. State of Play 2016: Trends and Developments. 2016.
  2. Barber Foss KD, Le Cara E, McCambridge T, et al. Epidemiology of Injuries in Women's Lacrosse: Implications for Sport-, Level-, and Sex-Specific Injury Prevention Strategies. Clin J Sport Med 2017; [Epub ahead of print]. [Crossref] [PubMed]
  3. Asif IM, Harmon KG. Incidence and Etiology of Sudden Cardiac Death: New Updates for Athletic Departments. Sports Health 2017;9:268-79. [Crossref] [PubMed]
  4. Ceylan O, Mese T, Gursu AH. Using cardiovascular imaging modalities to determine cardiac disorders before starting sports activities. Turk Kardiyol Dern Ars 2017;45:160-6. [PubMed]
  5. Hoyt WJ, Dean PN, Schneider DS, et al. Coronary Artery Evaluation by Screening Echocardiogram in Intercollegiate Athletes. Med Sci Sports Exerc 2017;49:863-9. [Crossref] [PubMed]
  6. Leger L, Gojanovic B, Sekarski N, et al. The Impending Dilemma of Electrocardiogram Screening in Athletic Children. Pediatr Cardiol 2016;37:1-13. [Crossref] [PubMed]
  7. Drezner JA, O'Connor FG, Harmon KG, et al. AMSSM Position Statement on Cardiovascular Preparticipation Screening in Athletes: Current Evidence, Knowledge Gaps, Recommendations and Future Directions. Curr Sports Med Rep 2016;15:359-75. [Crossref] [PubMed]
  8. Smith NA, Chounthirath T, Xiang H. Soccer-Related Injuries Treated in Emergency Departments: 1990-2014. Pediatrics 2016;138:e20160346 [Crossref] [PubMed]
  9. McCrory P, Meeuwisse WH, Aubry M, et al. Consensus statement on concussion in sport: the 4th International Conference on Concussion in Sport, Zurich, November 2012. J Athl Train 2013;48:554-75. [Crossref] [PubMed]
  10. Currie DW, Kraeutler MJ, Schrock JB, et al. Time Trends in Concussion Symptom Presentation and Assessment Methods in High School Athletes. Am J Sports Med 2017;45:3368-73. [Crossref] [PubMed]
  11. Giza CC, Kutcher JS, Ashwal S, et al. Summary of evidence-based guideline update: evaluation and management of concussion in sports: report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology 2013;80:2250-7. [Crossref] [PubMed]
  12. Subotic A, Ting WK, Cusimano MD. Characteristics of the King-Devick test in the assessment of concussed patients in the subacute and later stages after injury. PLoS One 2017;12:e0183092 [Crossref] [PubMed]
  13. Mahooti N. Sports-Related Concussion: Acute Management and Chronic Postconcussive Issues. Child Adolesc Psychiatr Clin N Am 2018;27:93-108. [Crossref] [PubMed]
  14. Institute of Medicine and National Research Council. Sports-Related Concussions in Youth: Improving the Science, Changing the Culture. Washington, DC: The National Academies Press; 2014.
  15. Waddington GS. The King-Devick Test and concussion diagnosis. J Sci Med Sport 2017;20:707. [Crossref] [PubMed]
  16. Elbin RJ, Sufrinko A, Schatz P, et al. Removal From Play After Concussion and Recovery Time. Pediatrics 2016;138. [PubMed]
  17. Davis GA, Anderson V, Babl FE, et al. What is the difference in concussion management in children as compared with adults? A systematic review. Br J Sports Med 2017;51:949-57. [Crossref] [PubMed]
  18. Collins MW, Iverson GL, Lovell MR, et al. On-field predictors of neuropsychological and symptom deficit following sports-related concussion. Clin J Sport Med 2003;13:222-9. [Crossref] [PubMed]
  19. Lau BC, Kontos AP, Collins MW, et al. Which on-field signs/symptoms predict protracted recovery from sport-related concussion among high school football players? Am J Sports Med 2011;39:2311-8. [Crossref] [PubMed]
  20. Johnson JJ, Loeffert AC, Stokes J, et al. Association of Salivary MicroRNA Changes With Prolonged Concussion Symptoms. JAMA Pediatr 2018;172:65-73. [PubMed]
  21. Kerrigan JM, Giza CC. When in doubt, sit it out! Pediatric concussion-an update. Childs Nerv Syst 2017;33:1669-75. [Crossref] [PubMed]
  22. Boden BP, Breit I, Beachler JA, et al. Fatalities in high school and college football players. Am J Sports Med 2013;41:1108-16. [Crossref] [PubMed]
  23. Bouchama A, Knochel JP. Heat stroke. N Engl J Med 2002;346:1978-88. [Crossref] [PubMed]
  24. Demartini JK, Casa DJ, Stearns R, et al. Effectiveness of cold water immersion in the treatment of exertional heat stroke at the Falmouth Road Race. Med Sci Sports Exerc 2015;47:240-5. [Crossref] [PubMed]
  25. Racinais S, Alonso JM, Coutts AJ, et al. Consensus recommendations on training and competing in the heat. Scand J Med Sci Sports 2015;25:6-19. [Crossref] [PubMed]
  26. Pryor RR CD, Adams WM, Belval LN, et al. Maximizing Athletic Performance in the Heat. Strength Cond J 2013;35:24-33. [Crossref]
  27. Kerr ZY, Casa DJ, Marshall SW, et al. Epidemiology of exertional heat illness among U.S. high school athletes. Am J Prev Med 2013;44:8-14. [Crossref] [PubMed]
  28. Huffman EA, Yard EE, Fields SK, et al. Epidemiology of rare injuries and conditions among United States high school athletes during the 2005-2006 and 2006-2007 school years. J Athl Train 2008;43:624-30. [Crossref] [PubMed]
  29. Sylvester JE, Belval LN, Casa DJ, et al. Exertional Heat Stroke and American Football: What the Team Physician Needs to Know. Am J Orthop (Belle Mead NJ) 2016;45:340-8. [PubMed]
  30. Adams WM CD. Hydration for football athletes. Sports Sci Exchange 2015;28:1-5.
  31. American College of Sports Medicine. American College of Sports Medicine position stand. Exertional heat illness during training and competition. Med Sci Sports Exerc 2007;39:556-72. [Crossref] [PubMed]
  32. Casa DJ, Almquist J, Anderson SA, et al. The inter-association task force for preventing sudden death in secondary school athletics programs: best-practices recommendations. J Athl Train 2013;48:546-53. [Crossref] [PubMed]
  33. Casa DJ, DeMartini JK, Bergeron MF, et al. National Athletic Trainers' Association Position Statement: Exertional Heat Illnesses. J Athl Train 2015;50:986-1000. [Crossref] [PubMed]
  34. Casa DJ, Armstrong LE, Kenny GP, et al. Exertional heat stroke: new concepts regarding cause and care. Curr Sports Med Rep 2012;11:115-23. [Crossref] [PubMed]
  35. Armstrong LE, Johnson EC, Casa DJ, et al. The American football uniform: uncompensable heat stress and hyperthermic exhaustion. J Athl Train 2010;45:117-27. [Crossref] [PubMed]
  36. Argaud L, Ferry T, Le QH, et al. Short- and long-term outcomes of heatstroke following the 2003 heat wave in Lyon, France. Arch Intern Med 2007;167:2177-83. [Crossref] [PubMed]
  37. Epstein Y, Roberts WO, Golan R, et al. Sepsis, septic shock, and fatal exertional heat stroke. Curr Sports Med Rep 2015;14:64-9. [Crossref] [PubMed]
  38. Lim CL, Mackinnon LT. The roles of exercise-induced immune system disturbances in the pathology of heat stroke: the dual pathway model of heat stroke. Sports Med 2006;36:39-64. [Crossref] [PubMed]
  39. Boden BP, Pierpoint LA, Boden RG, et al. Eye Injuries in High School and Collegiate Athletes. Sports Health 2017;9:444-9. [Crossref] [PubMed]
  40. American Academy of Pediatrics Committee on Sports Medicine and Fitness. Protective eyewear for young athletes. Pediatrics 2004;113:619-22. [Crossref] [PubMed]
  41. Parver LM. Eye trauma. The neglected disorder. Arch Ophthalmol 1986;104:1452-3. [Crossref] [PubMed]
  42. Cass SP. Ocular injuries in sports. Curr Sports Med Rep 2012;11:11-5. [Crossref] [PubMed]
  43. Luke A, Micheli L. Sports injuries: emergency assessment and field-side care. Pediatr Rev 1999;20:291-301; quiz 302. [Crossref] [PubMed]
译者介绍
苏菲
毕业于第四军医大学,师从颉强院长从事小儿骨科临床、科研及教学工作多年,有丰富的小儿骨科常见病、多发病的诊疗经验。学术任职包括SICOT中国部数字骨科学会陕西省分会委员、中国医师协会骨科分会小儿骨科工作委员会肢体矫形与重建学组委员兼秘书。积极参与红会医院儿童骨病医院科研工作,协助颉强院长围绕儿童骨骼畸形与损伤、儿童内固定器械及新型骨移植材料研发等方面展开研究。目前为陕西省⼉童骨骼畸形与损伤疾病临床医学研究中⼼成员、陕西省创新能力支撑计划暨陕西省创新人才推进计划-科技创新团队成员;参与国家自然科学基金3项,省市级基金3项,主持陕西省卫生健康委科研项目1项,在国内外核心期刊发表论文多篇,获得首届陕西省临床高端科技创新大赛一等奖1项,2020年陕西省科技工作者创新创业大赛二等奖1项,参译第8版《洛克伍德-威尔金斯 儿童骨折》翻译出版,参译第13版《坎贝尔骨科手术学-儿童骨科卷》,参编国际⼉童脊柱侧弯专著《Pediatric Scoliosis》。(更新时间:2021/8/13)

(本译文仅供学术交流,实际内容请以英文原文为准。)

doi: 10.21037/aoj.2017.12.05
Cite this article as: Chi D, Patterson DC, Colvin AC. On-field pediatric injuries. Ann Joint 2018;3:1.

Download Citation